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Abstract: Chlorophyll is an essential vegetation pigment influencing plant photosynthesis rate
and growth conditions. Remote sensing images have been widely used for mapping vegetation
chlorophyll content in different ecosystems (e.g., farmlands, forests, grasslands, and wetlands) for
evaluating vegetation growth status and productivity of these ecosystems. Compared to farmlands
and forests that are more homogeneous in terms of species composition, grasslands and wetlands are
more heterogeneous with highly mixed species (e.g., various grass, forb, and shrub species). Different
species contribute differently to the ecosystem services, thus, monitoring species-specific chlorophyll
content is critical for better understanding their growth status, evaluating ecosystem functions, and
supporting ecosystem management (e.g., control invasive species). However, previous studies in
mapping chlorophyll content in heterogeneous ecosystems have rarely estimated species-specific
chlorophyll content, which was partially due to the limited spatial resolution of remote sensing images
commonly used in the past few decades for recognizing different species. In addition, many previous
studies have used one universal model built with data of all species for mapping chlorophyll of the
entire study area, which did not fully consider the impacts of species composition on the accuracy of
chlorophyll estimation (i.e., establishing species-specific chlorophyll estimation models may generate
higher accuracy). In this study, helicopter-acquired high-spatial resolution hyperspectral images
were acquired for species classification and species-specific chlorophyll content estimation. Four
estimation models, including a universal linear regression (LR) model (i.e., built with data of all
species), species-specific LR models (i.e., built with data of each species, respectively), a universal
random forest regression (RFR) model, and species-specific RFR models, were compared to determine
their performance in mapping chlorophyll and to evaluate the impacts of species composition. The
results show that species-specific models performed better than the universal models, especially for
species with fewer samples in the dataset. The best performed species-specific models were then used
to generate species-specific chlorophyll content maps using the species classification results. Impacts
of species composition on the retrieval of chlorophyll content were further assessed to support future
chlorophyll mapping in heterogeneous ecosystems and ecosystem management.

Keywords: vegetation chlorophyll content; remote sensing; heterogeneous ecosystems; species
composition; hyperspectral; ecosystem monitoring

1. Introduction

Chlorophyll content is a critical vegetation feature that influences photosynthesis
process and plant growth [1,2]. Therefore, mapping chlorophyll content is essential for
understanding plant physiological conditions, evaluating ecosystem status, and supporting
ecosystem management [3–5]. Chlorophyll contents can be measured at selected study sites
in the field, which, however, is costly, labor-intensive, and lacks representativeness [6]. In
contrast, remote sensing is an efficient and low-cost tool for mapping chlorophyll contents
of the entire study area and monitoring its spatiotemporal variations [7,8].
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Remote sensing images have been used in previous studies for mapping chlorophyll
content in different ecosystems, such as farmlands [3,9–11], forests [12–14], grasslands [15–
17], and wetlands [18,19]. Among these ecosystems, the farmlands and forests are more
homogeneous in terms of species composition. In contrast, grasslands and wetlands
are more heterogeneous with highly mixed species (e.g., different grass, forb, and shrub
species). Various species provide food and habitat to different wildlife, contribute dif-
ferently to ecosystem productivity and carbon cycling, and play different roles in other
ecosystem services (e.g., negative impacts of invasive species). Therefore, mapping species-
specific chlorophyll content is critical for better understanding ecosystem functions and
developing corresponding ecosystem management strategies. Previous studies mapping
chlorophyll content have focused more on landscape or regional scales and generated
chlorophyll maps for understanding its spatial variations [9,20]. However, few have fo-
cused on species-level chlorophyll mapping and investigating variations of chlorophyll
contents between species and how that affects ecosystem status. This is partially due to the
limited spatial resolution of remote sensing images (e.g., 2.4 m of QuickBird imagery and 6
m of SPOT-7 imagery) for recognizing mixed species [15,21]. In this study, 30 cm-resolution
hyperspectral images were acquired for classifying different species using an object-based
approach and consequently for mapping species-specific chlorophyll content.

Data analytical models (e.g., linear regression (LR), random forest regression (RFR), or
physically-based PROSAIL) are needed to estimate chlorophyll contents or other vegetation
properties (e.g., biomass) using remote sensing data [17,22–24]. Typically, a universal model
was used in each of the previous studies for estimating vegetation properties for the entire
study area. Such a universal model was built with training data of all sampling sites
without considering the species composition of these sites. This may not be an issue for
homogeneous ecosystems (e.g., farmlands and forests) with a limited number of species.
For heterogeneous ecosystems (e.g., grasslands and wetlands) with mixed grass, forb, or
shrub species, data of sampling sites with different species are generally collected aiming to
achieve high representativeness and consequently used for building a universal model that
is applicable for the entire study area. However, various grass, forb, and shrub species have
different canopy structures and leaf characteristics (e.g., chlorophyll contents), and data of
different species may thus have distinct statistical distribution patterns (e.g., one species
has a higher level of chlorophyll while another has a lower level). Consequently, building
a universal model for estimating vegetation properties of all species will not capture the
differences between species and thus may not achieve high accuracies for all species. Such
potential impacts of species composition on the retrieval of chlorophyll contents have not
been well explored in previous studies.

This study attempted to map species-specific chlorophyll content in a heterogeneous
grassland using high-spatial resolution hyperspectral images, aimed to better understand
physiological status of specific species. Considering the potential impacts of species
composition on the retrieval accuracy of chlorophyll content, this study examined two
approaches for evaluating such impacts and achieving a high accuracy of chlorophyll
estimation. The first approach was establishing a traditional universal model with training
data of all species for estimating chlorophyll. The second approach was building a specific
model for each dominant species (i.e., species-specific model) for calculating its chlorophyll
content. In terms of specific models, LR and RFR are among the most popular ones and have
the potential to achieve high accuracies [16]. Therefore, four models, including a universal
LR, species-specific LRs, a universal RFR, and species-specific RFRs were established and
examined, which can also indicate the sensitivity of LR and RFR to the impacts of species
composition. Different types of predictor variables, including band reflectance, spectral
indices, and texture metrics were extracted from the hyperspectral images and used in
different models for estimating chlorophyll content. Lastly, performances of these four
models were compared to understand the impacts of species composition on the accuracy
of estimating chlorophyll content. Research results are expected to clarify the impacts of
species composition on the retrieval of vegetation properties in heterogeneous ecosystems,
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improve our understanding of species-specific features together with their variations, and
support species-specific management actions for ecosystem conservation.

2. Material and Methods
2.1. Study Area

The study area of this research is Koffler Scientific Reserve (KSR) in King City, Ontario,
Canada (Figure 1). This region has monthly mean temperatures ranging from −10 ◦C to
30 ◦C and monthly mean precipitations from 20 mm to 100 mm [25]. Dominant species in
the study area include Awnless Brome (Bromus inermis), Goldenrod (Solidago canadensis L.),
and Fescue (Festuca rubra L.). There are three major types of canopies in terms of species
composition during the fast-growing season (e.g., May to July), including Awnless Brome,
Goldenrod, and sparse canopies with mixed Fescue and Awnless Brome (hereafter named
as Fescue canopies). Photos of these three types of canopies are shown in Figure 2.
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Figure 2. Three major types of canopies in the study area. (a) Awnless Brome, (b) Goldenrod, and (c) Fescue (mixed with
sparse Awnless Brome).

2.2. Field Data Collection

Field surveys were conducted in June 2016. A total of 29 field sites covering dif-
ferent species compositions were deployed in the study area using a stratified sampling
approach (e.g., more samples were collected for more dominant species). Each site was
a 2 m × 2 m square, divided into four quarter sections as four study plots with each plot
sized 1 m × 1 m. As a result, we built a total of 116 study plots. Field and remote sensing
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data collected from these study plots were used to establish analytical models and estimate
canopy chlorophyll content.

A range of field data, including GPS, leaf area index, species composition, and photos,
were collected for each plot. Specifically, GPS information was obtained using a Trimble
GeoExplorer with centimeter-level accuracy (Trimble Navigation Limited, Sunnyvale, CA,
USA). Leaf area index of each plot was measured with an AccuPAR LP-80 ceptometer
(Decagon Devices, Inc., Pullman, Washington, DC, USA). Species composition information
of each plot was visually interpreted in the field. In total, 68 plots were identified as
Awnless Brome, 32 as Fescue, and 16 as Goldenrod. In addition, leaf samples were also
collected to measure chlorophyll concentration using N, N-dimethylformamide (DMF)
in a wet lab and converted to chlorophyll content [26]. Canopy-level chlorophyll was
then calculated by multiplying the leaf area index with leaf chlorophyll content [21,27].
As different species have various canopy structures and leaf characteristics, their canopy
chlorophyll contents have different data distribution patterns (e.g., chlorophyll content of
one species is substantially higher than that of others). Canopy chlorophyll contents of the
three dominant species (Awnless Brome, Fescue, and Goldenrod) were thus plotted against
a spectral index in order to investigate their data distribution patterns (more details in the
following section).

2.3. Collection and Processing of Hyperspectral Imagery

The sensor used in this study was a Micro-HyperSpec developed by Headwall Pho-
tonics Inc. (Boston, MA, USA). It has 325 bands in the visible to near infrared region. The
sensor was installed on a helicopter to achieve an extended flight time and high stability
(Figure 3). The flight was conducted around noon on 14 June 2016, with a flight height
of about 250 m. The spatial resolution of images obtained at this height was 30 cm. The
raw image data were radiometrically corrected using correction coefficients provided by
Headwall Photonics Inc., followed by geometric correction using data from GPS and in-
ertial measurement unit (IMU) that were mounted on the sensor. Lastly, an atmospheric
correction was performed using an empirical line method in ENVI [28]. More details of
data collection and preprocessing can be found in [29,30].
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Hyperspectral features were then extracted from the image to estimate canopy chloro-
phyll content. It has been confirmed in our previous studies that band reflectance, principal
components (PCs), spectral indices, and texture metrics can all contribute to the retrieval of
chlorophyll content [16,31]. Therefore, these different types of variables were calculated
in this study. Specifically, 31 reflectance data were extracted with a 20 nm interval (e.g.,
from 400, 420, 440, to 980, and 1000 nm) (Table 1), aiming to remove correlated bands
and reduce the computing load. The top 5 PCs that included the majority of information
from the hyperspectral images were obtained in ENVI and named as PC1 to PC5 [32].
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Twenty-one spectral indices confirmed to be sensitive to vegetation properties were also
calculated (Table 1) [33–35]. Lastly, texture metrics of selected spectral bands were also
calculated in ENVI. Specifically, it was found that reflectance values at 450, 550, 670, 680,
704, 750, and 800 nm have been more commonly used in spectral indices for estimating
chlorophyll content, indicating their high sensitivity to this pigment [16]. Therefore, eight
texture metrics (e.g., variance, contrast, and entropy) of each of these seven spectral bands
were calculated, resulting in 56 texture metrics (Table 1). A total of 113 features (including
31 reflectance, 5 PCs, 21 indices, and 56 texture metrics) were thus obtained and used as
predictor variables in analytical models.

Table 1. Different types of predictor variables extracted from hyperspectral images.

Types Predictor Variables

Reflectance (nm)
Re400, Re420, Re440, Re460, Re480, Re500

. . .
Re960, Re980, Re1000

Principal Components PC1, PC2, PC3, PC4, PC5

Spectral Indices [16,31,35]

Normalized Difference Vegetation Index (NDVI)
Simple Ratio Index (SRI)

Enhanced Vegetation Index (EVI)
Atmospherically Resistant Vegetation Index (ARVI)

Red Edge Normalized Difference Vegetation Index (RENDVI)
Modified Red Edge Simple Ratio Index (MRESRI)

Modified Red Edge Normalized Difference Vegetation Index (MRENDVI)
Sum Green Index (SGI)

Vogelmann Red Edge Index 1 (VREI1)
Vogelmann Red Edge Index 2 (VREI2)
Vogelmann Red Edge Index 3 (VREI3)

Red Edge Position Index (REPI)
Photochemical Reflectance Index (PRI)

Structure Insensitive Pigment Index (SIPI)
Red Green Ratio Index (RGRI)

Plant Senescence Reflectance Index (PSRI)
Carotenoid Reflectance Index 1 (CRI1)
Carotenoid Reflectance Index 2 (CRI2)

Anthocyanin Reflectance Index 1 (ARI1)
Anthocyanin Reflectance Index 1 (ARI2)

Water Band Index (WBI)

Texture Metrics

b450-Mean, b450-Variance, b450-Homogeneity, b450-Contrast,
b450-Dissimilarity, b450-Entropy, b450-Second Moment, b450-Correlation

b550- . . .
b670- . . .
b680- . . .
b704- . . .
b750- . . .
b800- . . .

2.4. Establishment of Different Models for Estimating Chlorophyll

The canopy chlorophyll content and hyperspectral variables (Table 1), as the response
and predictor variables, were used for building LR and RFR models. As mentioned in
the Introduction, species composition might have impacts on the accuracy of estimating
canopy chlorophyll content if using different modelling approaches (i.e., a universal model
versus species-specific models). Therefore, four models were examined, including (1) a
universal LR model trained with data of all three dominant species (i.e., Awnless Brome,
Goldenrod, and Fescue); (2) species-specific LR models trained with data of each species,
respectively (i.e., LR of Awnless Brome, LR of Goldenrod, and LR of Fescue); (3) a universal
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RFR model trained with data of all three dominant species; and (4) species-specific RFR
models trained with data of each species, respectively.

The LR and RFR models were built using Python [36]. For LR models, each of
113 predictor variables (Table 1) was used for building an LR model. In RFR models, all
113 predictor variables were used, aiming to better explore and utilize spectral and textural
information in these variables. The importance of each variable was also calculated in RFR
for evaluating its potential contribution to the model [37]. The number of trees to grow in
RFR models was tested using 100, 200, 500, 1000, and 2000, aiming to identify a parameter
that could generate better model performance [38–41]. The minimum number of samples
required to be at a leaf node was set to 1, and all variables were tested at each splitting
node [37,39]. A leave-one-out cross-validation method was utilized for validating the four
models. Lastly, the universal LR model, species-specific LR models, universal RFR model,
and species-specific RFR models were compared. The model with the highest coefficient
of determination (R2) and lowest root mean square error (RMSE) was identified as the
best-performed model. The impacts of the species composition on the estimation accuracy
of chlorophyll content were then discussed. Lastly, the best-performed model was used for
producing chlorophyll content maps.

2.5. Object-Based Species Classification and Chlorophyll Mapping

One goal of this research is to produce a species-specific chlorophyll content map for
each of the three dominant species (i.e., Awnless Brome, Goldenrod, and Fescue, shown
in Figure 2). Image classification was thus performed to identify these species. An object-
based image analysis method was conducted to segment the hyperspectral image to objects
that represent different clusters of species. The segmentation was performed using ENVI
Feature Extraction (L3Harris Geospatial, Broomfield, CO, USA). The 113 band layers were
used for segmentation. A scale parameter of 0.1 and a merge parameter of 0.1 were used
for producing objects that could represent different species patches. Information on the
113 bands (i.e., 31 reflectance, 5 PCs, 21 indices, and 56 texture metrics) was passed to the
objects, which was used for classification. A random forest classification model was built
using Python and then used for species classification [36]. The number of trees in the forest
was set to 500, the minimum number of samples required to be at a leaf node was set to 1,
and all features were considered for splitting each node [36,42,43]. Samples for training
and validating the classification model included the study plots mentioned in the field
survey section and additional plots collected only for the species classification. A total
of 343 samples of Awnless Brome, 145 samples of Fescue, and 98 samples of Goldenrod
were identified. Half of these samples were used for training the classification model and
the other half for validation (i.e., calculation of confusion matrix). After the classification
model was validated, objects of different species and the corresponding band information
were used for estimating chlorophyll content using the best-performed models identified in
the previous section. Lastly, species-specific chlorophyll content maps were produced, and
variations of chlorophyll were thus investigated. Considering the computation demand
and purpose of demonstration, the part of the study area that featured a mixture of the
three species was used to produce the maps (Figure 1).

3. Results and Discussion
3.1. Data Distribution Patterns of Different Species

Canopy chlorophyll contents of three dominant species (Awnless Brome, Fescue, and
Goldenrod) were plotted against RENDVI, a top-performed spectral index for estimating
chlorophyll, aiming to observe distribution patterns of the chlorophyll values (Figure 4).
Data of all three species were plotted together in Figure 4a, and three species were plotted
separately in Figure 4b. It can be found that data of the three species had very different
distribution patterns (Figure 4b). For instance, the chlorophyll contents of Awnless Brome
were generally higher (e.g., >50 µg/cm2), those of Fescue were generally lower (e.g.,
<50 µg/cm2), and those of Goldenrod were in between (Figure 4b). The slope of the
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regression line for Fescue (e.g., 255.50) was close to that of all three species together
(e.g., 233.25), while that of Awnless Brome was much larger (e.g., 398.62), but that of
Goldenrod was much smaller (e.g., 114.91). Therefore, if building a universal linear
regression model for estimating chlorophyll contents of all three species together, the
different data distribution patterns would be ignored. The estimation accuracy may not
be high for each species, although it could be high for all three species together. This
hypothesis was examined and discussed in the next section.
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We also found the saturation issue of using spectral indices for estimating properties
of green and dense vegetation (Figure 4a). Specifically, when the chlorophyll contents were
higher than 120 µg/cm2, the RENDVI values remained around 0.6. The saturation issue
has been widely discussed in previous studies [38,39,44], indicating the potential limitation
of using LR and spectral indices for estimating vegetation properties, which is another
reason why RFR was also applied in this research for estimating chlorophyll content.

3.2. Comparison of Different Modelling Approaches for Estimating Chlorophyll

Four models, including a universal LR model (i.e., trained with data of all three
dominant species), species-specific LR models (i.e., trained with data of each species), a
universal RFR model, and species-specific RFR models, were established and validated
(with R2 and RMSE as metrics), aiming to compare their accuracies for chlorophyll esti-
mation. Validation results of the two LR models are shown in Figure 5. For the universal
LR model established with all species (Figure 5a), it was validated with all species data
together and achieved a satisfactory accuracy with R2 = 0.69 and RMSE = 18.6 µg/cm2. In
addition to this validation with all species to understand the overall model performance, it
was also critical to understand the model accuracy for each specific species. Therefore, the
model was then validated with data of each species, and it was found this universal LR
had largely varied accuracies for the three species (Figure 5b). Specifically, the accuracy
for Awnless Brome (R2 = 0.63 and RMSE = 22.3 µg/cm2) was close to that of the overall
accuracy. This is mainly because Awnless Brome is the dominant species and had 68 of
the total 116 samples, in addition to the fact that it has a wide range of chlorophyll content
(e.g., 20~140 µg/cm2), which can highly influence the regression. However, the model
accuracy was lower for Goldenrod (R2 = 0.51 and RMSE = 9.8 µg/cm2) and much lower
for Fescue (R2 = 0.27 and RMSE = 12.2 µg/cm2). This is because, compared to Awnless
Brome, there were fewer training samples of these two species (i.e., 32 for Fescue and 16 for
Goldenrod) in the regression, and their ranges of chlorophyll content were also smaller (i.e.,
15–60 µg/cm2 for Fescue and 35–70 µg/cm2 for Goldenrod). Data of these two species thus
had fewer impacts on the regression, causing their lower estimation accuracies. Therefore,
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when evaluated by pulling data from all species, a model with good performance does not
necessarily mean the model performance will be similarly good for each specific species,
especially for species with fewer training samples used in the model or with small value
ranges. This also reveals the influence of sample sizes of different species on the estima-
tion accuracy. In this study, a stratified sampling approach was used, and more samples
were thus collected for Awnless Brome as it is more dominant. If using another sampling
approach, such as collecting the same number of samples for all species, the estimation
accuracies of different species may change. Therefore, the sampling approach should also
be considered in the estimation of properties of different species.
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Figure 5. Scatter plots showing validation results (i.e., measured canopy chlorophyll contents versus estimated values) of
universal or species-specific LR models. (a) shows the validation of the universal LR model for all species together, and
(b) shows the validation for each species in this model. (c) shows the validation of the three species-specific models for all
species together, and (d) shows the validation of the three species-specific models for each species.

Species-specific LR models were validated, and the results are shown in Figure 5d.
Compared to the accuracies of the universal LR model (Figure 5b), it can be found that
the accuracies of Awnless Brome were close (e.g., R2 = 0.62 and RMSE = 21.8 µg/cm2 for
the species-specific model versus R2 = 0.63 and RMSE = 22.3 µg/cm2 for the universal
model). This is because, as discussed previously, Awnless Brome with most samples
dominated the data distribution. However, the accuracies for Goldenrod were improved
from R2 = 0.51 and RMSE = 9.8 µg/cm2 produced by the universal model to R2 = 0.56
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and RMSE = 7.6 µg/cm2 from the species-specific model. Similarly, the accuracies for
Fescue were largely improved from R2 = 0.27 and RMSE = 12.2 µg/cm2 to R2 = 0.43 and
RMSE = 10.0 µg/cm2. These improvements were due to the fact that the species-specific
models are capable of capturing the data patterns of each species. In addition, the results
of three species-specific models were also validated by combining data of all three species,
and the results are shown in Figure 5c. The utilization of species-specific models also
slightly improved the estimation accuracy for the three species overall, i.e., from R2 = 0.69
and RMSE = 18.6 µg/cm2 to R2 = 0.72 and RMSE = 17.7 µg/cm2. In summary, species-
specific LR models can generate higher estimation accuracy than a universal LR. This is
especially true for less-dominant species with fewer training samples and smaller ranges
of vegetation properties (e.g., chlorophyll content).

A universal RFR model was also established using data of all three species together
and validated (Figure 6a). This model achieved an accuracy with R2 = 0.79 and RMSE =
15.0 µg/cm2, which was higher than that of the universal LR model with R2 = 0.69 and
RMSE = 18.6 µg/cm2 (Figure 5a). This is because the RFR model is capable of using multiple
predictor variables in the model and selecting more important ones for splitting the trees, and
thus it has a much higher predicting power than the LR. This universal RFR model was also
validated using data of each specific species and the results are shown in Figure 6b. Compared
to the overall accuracy of all three species (R2 = 0.79 and RMSE = 15.0 µg/cm2, Figure 6a),
the accuracy of Awnless Brome was close (R2 = 0.75 and RMSE = 17.7 µg/cm2), while the
accuracy of Goldenrod (R2 = 0.59 and RMSE = 8.2 µg/cm2) was lower, followed by that of
Fescue (R2 = 0.34 and RMSE = 10.7 µg/cm2) (Figure 6b). A similar finding was also noticed
for the universal LR model (Figure 5a,b), and the reasons would be similar, i.e., the Awnless
Brome has more samples and a wider range of chlorophyll than those of Goldenrod and
Fescue. It is also important to note that the universal RFR model achieved higher accuracies
for each specific species (Figure 6b) than the universal LR model (Figure 5b); the accuracy of
Awnless Brome was improved from R2 = 0.63 and RMSE = 22.3 µg/cm2 in the universal LR
to R2 = 0.75 and RMSE = 17.7 µg/cm2 in the universal RFR, the accuracy of Goldenrod was
improved from R2 = 0.51 and RMSE = 9.8 µg/cm2 to R2 = 0.59 and RMSE = 8.2 µg/cm2, and
the accuracy of Fescue was improved from R2 = 0.27 and RMSE = 12.2 µg/cm2 to R2 = 0.34
and RMSE = 10.7 µg/cm2. These suggest clearly better performance of the RFR over LR.
Therefore, the RFR model is recommended for similar studies to estimate vegetation features
using remote sensing.

Species-specific RFR models were also established and validated, and the results are
shown in Figure 6d. Compared to the universal RFR model (Figure 6b), the accuracies
of Awnless Brome were close in the two models (R2 ~ 0.75 and RMSE ~ 18.0 µg/cm2).
However, the accuracy of Goldenrod was improved from R2 = 0.59 and RMSE = 8.2 µg/cm2

in the universal RFR to R2 = 0.72 and RMSE = 6.2 µg/cm2 in the species-specific RFR, and
the accuracy of Fescue was improved from R2 = 0.34 and RMSE = 10.7 µg/cm2 to R2 = 0.56
and RMSE = 8.7 µg/cm2 (Figure 6b,d). Similar findings were also observed for the universal
LR versus species-specific LR models (Figure 5b,d). This further confirms the impacts of
using universal models on the accuracies of estimating vegetation properties, especially
for the species that have fewer training samples included in the model. Comparing the
results of species-specific LR (Figure 5d) and that of species-specific RFR (Figure 6d),
accuracies of all three species were improved. Specifically, the accuracy of Awnless Brome
was improved from R2 = 0.62 and RMSE = 21.8 µg/cm2 in the species-specific LR to
R2 = 0.74 and RMSE = 18.2 µg/cm2 in species-specific RFR, the accuracy of Goldenrod was
improved from R2 = 0.56 and RMSE = 7.6 µg/cm2 to R2 = 0.72 and RMSE = 6.2 µg/cm2, and
the accuracy of Fescue was improved from R2 = 0.43 and RMSE = 10.0 µg/cm2 to R2 = 0.56
and RMSE = 8.7 µg/cm2. This also indicates the better performance of RFR than LR, as
discussed previously, owing to the fact that RFR is capable of evaluating the importance of
predictor variables and selecting more important ones for improving estimation accuracy.
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Figure 6. Scatter plots showing validation results (i.e., measured canopy chlorophyll contents versus estimated values) of
universal or species-specific RFR models. (a) shows the validation of the universal RFR model for all species, and (b) shows
the validation for each species in this model. (c) shows the validation of the three species-specific RFR models for all species
together, and (d) shows the validation of the three species-specific RFR models for each species.

To understand which variables are more important in the universal and species-
specific RFR models for predicting chlorophyll contents, the top 10 important variables
in each model were identified. As the variables that are important in the species-specific
models may also be, or not, important in the universal RFR, they were listed in Table 2 for
comparisons. Nine of the top 10 important variables in the Awnless Brome model were
also among the top 10 for the universal model, including VREI1, b680-Mean, RENDVI,
and MRENDVI, etc. However, only 3 of the top 10 important variables in the Fescue
model were among the top 10 for the universal model, which were RENDVI, VREI1, and
RGRI. Similarly, only 2 of the top 10 important variables in the Goldenrod model were
among the top 10 for the universal model, and these are RGRI and NDVI. Most of the
variables that were important in the Fescue or Goldenrod models are not among the top 10
important ones for the universal model, such as SIPI, PC3, and b680-Correlation for the
Fescue model, and Re740, PC1, and Re900 for the Goldenrod model. This also explains
the lower estimation accuracies for Fescue and Goldenrod in the universal model, as the
important variables for these two species were not rated as important for the universal
model. In contrast, the most important variables for the Awnless Brome model were also
important in the universal model, which indicates that data of Awnless Brome drove the
regression model and contributed to the high estimation accuracy for this species. In
addition, different types of variables (e.g., reflectance, PCs, indices, and texture metrics)



www.manaraa.com

Remote Sens. 2021, 13, 4671 11 of 16

were among the top 10 important ones in the universal or species-specific RFR models
(Table 2). This indicates that they have different information that can all contribute to
the model predictions. Therefore, calculating multi-type variables is recommended for
estimating vegetation properties using remote sensing.

Table 2. Top 10 important predictor variables in the three species-specific RFR models and if they are also top 10 important
variables in the universal RFR model.

Top 10 Important Variables in the Species-Specific Models

Also Top 10 Important in the Universal Model NOT Top 10 Important in the Universal Model

Awnless Brome Model

VREI1
b680-Mean
RENDVI

MRENDVI
b670-Mean

MRESRI
Re680
Re660
NDVI

CRI1

Fescue Model
RENDVI

VREI1
RGRI

SIPI
PC3

b680-Correlation
b670-Correlation

WBI
ARVI
CRI1

Goldenrod Model RGRI
NDVI

Re740
PC1

Re900
b750-Mean

Re940
EVI

Re920
Re800

3.3. Object-Based Species Classification

The hyperspectral imagery was segmented into objects that represented different
species patches, and the objects were then classified into different species. Classification
accuracies were evaluated, and the results are shown in Table 3. The classification model
had an overall accuracy of 94% and a kappa coefficient of 88%, indicating good performance
of the model. Producer’s and User’s accuracy values of the three species were mostly
higher than 90%, but the Producer’s accuracy of Goldenrod was 77%. There were eight and
five Goldenrod samples that were misclassified as Awnless Brome and Fescue, respectively
(Table 3). Sometimes Goldenrod and Awnless Brome/Fescue are mixed in one object, while
the 30 cm resolution is not sufficient to identify each and thus misclassifies. Using images
with higher spatial resolution may improve classification accuracy.

Table 3. Confusion matrix for species classification.

Classified

Awnless
Brome Fescue Goldenrod All Producer’s

Accuracy

Actual

Awnless Brome 171 1 4 176 97%

Fescue 0 60 1 61 98%

Goldenrod 8 5 43 56 77%

All 179 66 48 293 -

User’s Accuracy 96% 91% 90% - 94%

Species classification map is shown in Figure 7. Clear spatial variations of species
can be observed from the map. For example, Goldenrod plants are mainly seen in the
north-western and north-eastern corners of the mapped area, Awnless Brome plants are
mostly in the central part from west to east, and Fescue plants are in the other areas.
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3.4. Mapping Species-Specific Chlorophyll Contents

Objects of classified species and corresponding spectral and textural information
were used for producing chlorophyll content maps using the optimal models (i.e., species-
specific RFR) identified in Section 3.2. A combined chlorophyll map of all species and
species-specific maps are shown in Figure 8. Spatial variations of chlorophyll contents of
different species can be observed.
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As discussed in previous sections (e.g., Figure 4), the Awnless Brome generally had
higher chlorophyll contents, Fescue’s chlorophyll was relatively lower, and Goldenrod was
in between, which can also be observed in the chlorophyll content maps (Figure 8b–d). For
example, most areas with Awnless Brome had chlorophyll contents higher than 50 µg/cm2,
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and areas with chlorophyll lower than this value were mostly in the south-eastern section of
the mapped area (Figure 8b). Areas with Fescue generally had chlorophyll contents lower
than 55 µg/cm2 (Figure 8c). One area with chlorophyll less than 40 µg/cm2 was found in
the south-western section (i.e., the large brown-color area in Figure 8c). This is a crest area
with limited soil moisture, which is more suitable for the growth of Fescue. In terms of
Goldenrod, its distribution range was much smaller than that of the other two species, and
it generally had chlorophyll contents in the range of 40–70 µg/cm2 (Figure 8d). Overall,
the species-specific chlorophyll maps contribute greatly to the interpretation of species
distribution and corresponding chlorophyll contents, which is critical for understanding the
physiological status of different species and the overall ecosystem conditions. Generating
species-specific maps of various vegetation properties (e.g., chlorophyll content, leaf area
index, biomass) is thus recommended, especially for heterogeneous ecosystems (e.g.,
grasslands and wetlands).

4. Summary

Ecosystems such as grasslands and wetlands are heterogeneous with mixed species.
Mapping species-specific vegetation properties (e.g., chlorophyll content) is critical for
understanding their distributions, growth conditions, and ecosystem health. This is espe-
cially true for mapping and investigating invasive species that is a considerable issue in
many ecosystems. Universal models that are generally built with data of all species have
been commonly used in previous studies for mapping vegetation properties using remote
sensing. Data distribution patterns of specific species are ignored in such universal models,
which may affect the estimation accuracies of each specific species. In this study, a universal
LR and species-specific LR models as well as a universal RFR and species-specific RFR
models were built using data of three dominant species in a heterogeneous grassland. Their
performances were examined and compared to evaluate the impacts of species composition
on the retrieval accuracy of chlorophyll content.

The results showed that the species-specific models generated higher accuracies than
the universal models for species that were less dominant (i.e., Fescue and Goldenrod that
had fewer training samples in the dataset and narrow ranges of chlorophyll contents,
Figures 5 and 6). In contrast, the species-specific models and the universal models had
similar accuracies for species that were more dominant (i.e., Awnless Brome with more
training samples in the dataset and a wide range of chlorophyll content). This indicates
that data of the more dominant species will drive the universal models (regardless of
using LR or RFR), which will reduce the accuracy of less dominant species. Most of top 10
important variables in the RFR model of Awnless Brome were among the top 10 important
ones in the universal RFR, but this was not the case for the RFR models of Fescue and
Goldenrod (Table 2). Important variables in these two species-specific models mostly
were not among the important ones in the universal model, which thus caused the low
accuracies for chlorophyll estimations of these two species.

Overall, utilization of species-specific models is recommended for mapping vegetation
properties in heterogeneous ecosystems, especially if the research focus is on less dominant
species (i.e., species with fewer training samples collected or if they have narrow ranges
of vegetation properties). It will be critical to plot the property data of different species
(e.g., against a popular spectral index as shown in Figure 4) and check the data distribution
patterns of these species. Then more informed decisions of model selections can be made.
In addition, RFR models performed consistently better than the LR models owing to their
capabilities of utilizing multiple predictor variables that can improve the predicting power
of the model. There are other advanced analytical models that have been developed for
estimating vegetation properties, including artificial intelligence algorithms, which can
be explored to further improve estimation accuracy [45,46]. Further, multiple types of
variables (e.g., reflectance, indices, principal components, and texture metrics) contain
different information that can all contribute to the estimation of vegetation properties
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(Table 2). Therefore, the calculation of such different types of variables is also important for
improving the model performance.
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